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Abstract. The process capability index C:,mk which is a generalization of C,,; is defined by the

use of the idea of Chan et al. [1] for asymmetric tolerance. In this paper, we proposed a Jackknife
confidence interval for and compare its coverage probability with the other three Efron and
Tibshirani’s [2] bootstrap interval estimate techniques. The simulation results show that the
Jackknife method has higher chance of reaching the nominal confidence coefficient for all cases
considered in this paper. Therefore this method is recommended for used. One numerical example
to demonstrate the construction of confidence interval for the process capability index is also given
in this paper.

Introduction

The index C, only measures the process variation without considering the process centering. The
index C, take the process variation and process centering into account, but not considering the
process targeting to the preset target. The index C,, takes the process variation and the process
targeting to the preset target into account. Combing the factors considered by indices C,,
C Pearn [3] developed the index C,,, . For asymmetric tolerance( T #m ), a simulation
comparison study for estimating the process capability index C;m is done in Wu [4]. Making us:

of the idea of Chan et al. [1], the process capability index C;m,, , a generalization index of C,

pm >

! in(D, —|T — ), D, =|T - D -T-
defined as C,,, o T #Dy ~|T ~ £ = -4 , where USL and LSL are th
3o +(u-T) Vol +(u-T)

upper and lower specification limits preset by the process engineers, 4 is the process mean 0 i
the process standard deviation, m=(USL+LSL)/2 is the midpoint of specification limits a
d=(USL-LSL)/2 is the half length of the specification interval, D, =T —LSL, Dy = USL —Tand
D' =min(D,,D,)/3 . Replacing parameters 4 and o° by sample mean X and sampk
variance S? respectively, then we have the natural estimator as = —D_—Iiﬂ
JSTH(X-T)

The process must be stable in order to produce the reliable estimates of x# and o”.

Since the distribution of C‘;mk is quite complicated under normal assumption, Franklin anf
Wasserman [5] make used of the three Bootstrap confidence interval techniques proposed by Efto
and Tibshirani [2] to construct the confidence intervals for C . The advantage of Eforn’s thre
interval techniques is nonparametric or free of distribution assumptions of X . In this paper, w
proposed a nonparametric Jackknife confidence interval for the index C;mk and compare i
coverage probabilities with the other three Efron and Tibshirani’s methods by simulation study

According the simulation results, the third Efron and Tibshirani’s method (BCPB method) alway

has the highest coverage probability than the other two methods and it can also reach the normd
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wnfidence coefficient for some cases when simulation sample is coming from the normal
distribution. The simulation results also show that BCPB method has the highest chance of having
highest coverage probability than the other three nonparametric methods and this method is

rcommended for the interval estimation of process capability indices C.

me for simulation sample

wming from normal or a heavily skewed distribution. For symmetric tolerance (T = m), the index
C, is reduced to C,,,. Therefore, all results for the index C,. are applicable for the index
(e - At last, one real life example is given to demonstrate the construction of confidence interval

for the index C,,,.
Introduction of four methods

The Bootstrap method was introduced by Efren [6]. Let X ... X, be the original random sample
ffom a process with distribution F. A Bootstrap sample is one of size n drawn ( with replacement )
from the original sample and is denoted by X, X ~. There are a total of »" such possible samples.
Let B be the number of Bootstrap samples and B is taken to be 1000 throughout this paper. Let
Y'()) and S(i) be the sample mean and sample variance based on the ith Bootstrap sample. The

first three Bootstrap interval estimate methods proposed by Efron and Tibshiani(1986) and the
fourth Jackknife are introduced as follows :

Standard bootstrap confidence interval (SB). First, calculate the natural estimator of C;m,t given
D-_IT'Y '(i)| based on the ith Bootstrap sample, i=1, ..., B. Then calculate the

A o Y il | N
- ST +(X"()-T)
1

sample average of the Bootstrap estimates é;mk(')=—

= zlé;mk(i) and the sample standard

. ; 1 A L
deviation of Bootstrap estimates S o= \/E Z: [Coi)—C, OF .

Then the (1-a)100% confidence interval for C;.,,k is (C"’;mkiZmSé.m‘), where Z,, is the

right tail &t/2 percentile of a standard normal random variable Z. If a 95% confidence interval is
desired, then Za,[2 =1.96. If a 97.5% lower confidence interval of the index is desired, the lower

confidence limit can be easily obtained by simply selecting the lower value of the two-sided
confidence interval,

Percentile bootstrap confidence interval (PB). Let é;m(l)sé;mk(2)s---Sé;mk(B) be the

sorted Bootstrap estimates. Then é;n‘t(B*a/2) and C‘;M(B*(l—a/Z)) are the /2 and
(I-2/2) percentile points of the distribution of é‘;mk(i). The (1-a)100% approximate
wonfidence interval for C,,, is given by (é;mk(B*a/2),CA‘;m,‘(B*(1-a/2))).

Biased corrected percentile bootstrap confidence interval(BCPB). Since the Bootstrap
distribution may be a biased distribution, the third method was developed to correct for this

potential bias. For example, if é;mk is 1.63 and in the order values of (f';mk(i) we have
(i (412)=161 and C},, (423)=166, then p, = P(C’,, <1.63)=412/1000 = 412 Calculate
Z,=0"'(p,) =¢7'(412)=-222, where ¢ is the inverse of the distribution function standard
normal random variable Z. Then calculate P, = ¢(2Z, ~Zy) and B, =¢(2Z,+Z,,), where ¢
is the cdf of a standard normal variable Z. Then the (1-@)100% approximate confidence interval
for C,, is given by [C-';m =([PLxB]+1),é;m,, =([P;xB]+1)], where [x] denotes the largest
integer being less than or equal to x.
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Jackknife method. Quenoulli [7] originally introduced the Jackknife as method of reducing the
bias of an estimator of a serial correlation coefficient. We employ his method as follows: Table 1: The
é=C:,, denote the natural estimator of §=C;,, based on the complete sample. Eliminating the fist n
observation, we make use of the remaining n— I observations to calculate the first natural estimator -0 | =20 -
of C;,mk and denoted by 9(11 .Similarly, eliminating the second observation, we can have the {
second natural estimator of Cp,,,k and denoted by 9(2) based on the remaining n-1 observations. : Coverage Length Ci
Repeat the same procedure, we can have n natural estimators denoted by 9“),9(2), 3(») based on 0o13F 1257 0.
the subsample of size n— /. The ith perseudo value is defined as Q:nﬁ—(n—l) N 0.913* 12355 0.
. =12, i .. The Quenoulli’s estimator is the mean of the é,g . The Jackknife estimator P 0939 1308 0.
— f Jackknife 0871* 1396 0.
: 2..6.-8) " 4 :
standard error is §, — |&=""""7  Turkey[8] suggested that the statistic . #-¢ should be 1
8 k(k—l) !:_ST 4,0°)=(50,9)
distributed approximately as Student’s t with k —I degrees of freedom. Then the (1-a)100 0.908* 0.980 0.
approximate confidence interval forC, ,is given by [§ita/2(n—l).5’§-], where 1,,,(n-1) is h 0.895* 0977 0.
i right tail /2 percentile of a student’s t distribution. E® L0 1001 0
0.

\ Jackknife 0.834* 1.131

Simulation Comparisons (o*) = (52,4)

For simulation studies3 the_ upper limit and. low?r lim'it 'of t_he process are set to l_Je USL=§0 YT RRTE
LSL=40 and then midpoint of the specification limits is m=>50. All simulation studies & i
accomplished by Fortran IMSL[9] subroutines for n=10(10)40(20)60 from a normal distributic 0936 0862 0!
with combinations of (4, 0”)=(50,4),(50,9),(52,4),(52,9). The target values are set to 7=55 unde 3CPB 0941 0855 0.
ickknife 0950 0.931 0.

asymmetric tolerance, then the corresponding true index values are C;mk =(.309,.286..462,.393)

With 1000 simulation runs, the percentage of times the actual index contained in the intervals 0 Uo) = (52,9)
four methods out of 1000 is calculated and the average length of the 95% confidence mtervﬂl
also computed. All simulation results are listed in Tables 1 for normal process and a highly skew
process, where a highly skewed process has the same structure of means and variances and |
created by simulating a Chi-square distribution with 4 degrees of freedom and suitably scaling
shifting the distribution. The frequency of coverage is a Binomial event with p=.95 and n=100\
Thus a 95% confidence interval surrounding the expected coverage frequency .95 would have

bound of +1.96,/(.95)(.05)/1000 =+.0135. The frequency of coverage significantly different fro

the expected value of .95 are marked by an asterisk (*) in Tables 1. From Table 1, the covera
probabilities increase and the average lengths decrease when the sample size n increases for mg
cases. Four methods have better performance for the normal process than the heavily sk
process because the heavily skewed process is always the most difficult process to deal with. [he
optimal methods based on the highest coverage probability in order to reach the nominal confider
coefficient for different situations are listed in Table 2. From Table 2, BCPB method has the hi 4;
chance of having highest coverage probability than the other three nonparametric methods and thi

method is recommended for the interval estimation of process capability indices C;m,(

0.924* 0900 0.
0.922% 0.886 0.
0.930% 0.881 0!
0938 0988 0.

Table 2: The

umerical Example
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ample, the inside diameter 1
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Table 1: The coverage probability and average length with T=55
normal process heavily skewed process
k') =(504) | n=20 n=40 n=60 n=20 n=40 n=60
Coverage Length Coverage Length Coverage Length| Coverage | Length | Coverage | Length | Coverage | Length
5B 0.913* 1.257 0918* 0.887 0.921* 0.718| 0.871* | 0.183| 0.897* | 0.136| 0.911* | 0.112
PB 0.913* 1.255 0912* 0.885 0.906* 0.717| 0.873* | 0.179| 0.908* | 0.133| 0.919* | 0.110
BCPB 0939 1308 0939 0912 0924* 0.730| 0.878* | 0.186| 0.911* | 0.137] 0.921* | 0.113
Jackknife 0.871* 1.396 0.876* 0.973 0.869* 0.784| 0.882* | 0.196| 0.901* | 0.140( 0.910* | 0.114
(1,0%)=(50,9)
B 0.908* 0.980 0922* 0.680 0.918* 0.554| 0.864* | 0.320| 0.912* | 0.229| 0.902* | 0.187
PB 0.895* 0.977 0.886* 0.680 0.873* 0.553| 0.869* | 0.312| 0.918* | 0.225| 0.915* | 0.184
BCPB 0.910* 1.001 0913* 0.682 0.907* 0.551| 0.879* | 0.325| 0.925* | 0.231| 0.926* | 0.189
Jackknife 0.834* 1.131 0.848* 0.773 0.858* 0.625| 0.868* | 0.348| 0.915* | 0.239] 0.901* | 0.193
(4,0%) = (52,4)
B 0947 0873 0939 0607 0954 0.493| 0.872* | 0.389| 0.920* | 0.283 | 0.906* | 0.229
PB 0936 0862 0.934* 0602 0947 0489| 0.886* | 0.380| 0.921* | 0.279| 0.917* | 0.226
BCPB 0941 0855 0940 0601 00958 0489 0.894* | 0.392| 0.929* | 0.285| 0.922* | 0.229
Jackknife 0950 0931 0946 0.627 0958 0.504| 0.881* | 0.421( 0.919* | 0.295| 0.906* | 0.235
(1.0%)=(52.9)
SB 0.924* 0900 0.945 0.641 0954 0.515| 0.872* | 0.518| 0.914* | 0.389| 0.921* | 0.327
PB 0.922* 0.886 0943 0636 0954 0.511] 0.896* | 0.506| 0.922* | 0.383| 0.922* | 0.323
BCPB 0.930* 0.881 0948 0634 0957 0.511] 0.902* [ 0.517| 0.926* | 0.390( 0.928* | 0.327
Jackknife 0938 0988 0946 0669 0953 0.529| 0.878* | 0.579| 0.916* | 0.413| 0.928* | 0.341

Table 2: The optimal method among four nonparametric methods

Numerical Example

T=55
(#£,0%) | Normal  Heavily Shewed
(50,4) | BCPB JTackknife
(50,9) |sB BCPB
(52,4) | Jackknife BCPB
(52,9) | Jackknife BCPB

The example 5-1 in Montgomery [10] is used to demonstrate the construction of 90% and 95%
confidence interval estimates and the 95% and 97.5% lower confidence limit of C;m,‘. In that

example, the inside diameter measurement data of the 125 Piston rings for an automotive engine
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produced by a forging process is recorded in Table 5-1. The sample mean and the sample variang
are obtained as 74.001176 and .010199. The upper limit, lower limit of the specification interval
given by 74.041972 and 73.96038 respectively and thus the midpoint is m=74.001176. The taf
for asymmetric tolerance and is given by 74.003. The natural point estimates of the correspondi

] 8. F. Wu: A Simulation Comy
: with Asymmetric Tolerances. |
- Vol. 20 (2009), p. 243-253

] L. A. Franklin and G. Was,
“introduction. Communications
231-242

] B. Efron: Bootstrap methods:
- (1979), p. 1-26

M. H. Quenouille: Approxima
- Statistical Society, B 11 (1949)

index is é;m =1.078 for asymmetric tolerance. Their confidence interval estimates or the low

confidence limits are presented in Table 3. Usually, if a process with C;mk >1, then it can’

considered to be a capable process. From Table 3, we can conclude that this Piston rings process
incapable for asymmetric tolerance (7' =74.003 # m ).

Table 3: The 90% and 95% confidence intervals (length) or the 95% and 97.5% lower confident
bound for C,,, with T=74.001176 (symmetric tolerance) and for C;,m,r with T=74.003

(asymmetric tolerance).

[ I W. Tukey: Bias and Confider

T=74.003 90% confidence intervals (length) T=74.003 95% confidence intervals (length) . A
A _ 95% 1 fidence bound Av o _ 97.5% lower confidence bound 193%), v. 614

. ,=1.078 % lower confiden un C, . =1.078 ence : (938, v

B (0.867.1.289)(0.422) SB (0.831,1.325)(0.494) 9] Microsoft Developer Studio F
(0.867,00) (0.831,00) TI0\D. C. M :

- (0.871,1.290)(0.418) 5 (0.837,1.332)(0.495) 101D. C. Montgomery: Introduct
(0.871,00) (0.837,00) (2001)
(0.858,1.281)(0.423) (0.828,1.326)(0.498)

BEEE (0,858, 00 ) BEER (0.858.00)

) (0.850,1.295)(0.445) . (0.806,1.326)(0.520)
Jackknife (0.850, 00 ) Jackknife (0.806, 00)
Conclusion

In estimating any process capability index that confidence intervals estimates should be used
instead of the simple point estimates. The nonparametric confidence intervals estimates can protect.
the user from the error of calculating confidence intervals based on an assumed normal process if
the process is a distinctly non normal process. Among four methods, the BCPB method is
recommended for use. A computer program is provided by authors to obtain the interval estimales
of the index by four methods for symmetric or asymmetric tolerance. '
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